

44-Karanpur, Near Luxmi Narayan Mandir, Dehradun **Contact**: 8171000425, 7252022576

Web: www.genesis-tutorials.com
Email: info@genesis-tutorials.com

GENESIS TUTORIALS

Unit Test-Chemical Kinetics

1. For the reaction 2 $X_3 \rightarrow 3$ X_2 , the rate of formation of X_2 is:

	(a) $3(-d[X_3] / dt)$	(b) $\frac{1}{2}$ (-d[X ₃] / d	t)					
	(c) $\frac{1}{3}$ (-d[X ₃] / dt)	(d) $\frac{3}{2}$ (-d[X ₃] / d	t)					
2.	For a reaction, 2A + B = rate of formation of Z (in (a) 3 x 10 ⁻⁴ (b) 2	mole $dm^{-3} s^{-1}$)	will be-		e dm ⁻³ s ⁻¹ , the			
3.	If the rate laws are expression rate constant is:		ntration unit mol	dm^{-3} , the unit of t	he third order			
	(a) dm ³ mol ¹ sec ¹ (b)) dm³ mol ^{–1} sec [–]	c) dm ⁶ mol	-2sec^{-1} (d) dm ⁻³ 1	mol ¹ sec ⁻¹			
4.	For the reaction $2A+B \rightarrow by$	C+2D which is f	first order in A an	d first order in B, th	ne rate is given			
	(a) k[A] ² [B] (b)) k[A][B] ²	(c) k[A] ²	(d) k[A][B]				
5.	The value of the rate of co			$2N0_2 + F_2 \rightarrow 2N0_2F$	is 38 dm³ mol			
6.	(a) 0 (b) 1 The rate expression for rate if initial concentrate	eacti <mark>on A (</mark> g) +H	$B(g) \to C(g)$ is ra		hat changes in			
	(a) 4 (b) 6	(c) 8	(d) 2					
7. The unit of rate of reaction and rate constant are the same for a:								
	(a) zero order reaction	(b) firs	t order reaction					
	(c) second order reaction	n (d) this	rd order reaction					
8.	8. For an elementary reaction 2A+B→A ₂ B if the volume of vessel is quickly reduced to half of its original volume then rate of reaction will							
	(a) Unchange	(b) Incre	ase four times					
	(c) Increase eight times	(d) Decre	ease eight times.					

44-Karanpur, Near Luxmi Narayan Mandir, Dehradun

Contact: 8171000425, 7252022576 Web: www.genesis-tutorials.com Email: info@genesis-tutorials.com

9.	In the following reaction $A\rightarrow B+C$, rate constant is 0.001 Ms ⁻¹ . If we start with	1 M of A t	then
	concentration of A and B after 10 minutes are respectively:		

- (a) 0.5M, 0.5M
- (b) 0.6M, 0.4M
- (c) 0.4M, 0.6M
- (d) None of these
- 10. Half-life $(t_{1/2})$ and completion time (T) of the given reaction are:

 $3A \rightarrow P$, rate law = k

- (a) 500min, 750min
- (b) 500sec, 750sec
- (c) 500sec, 1000sec
- (d) None of these
- 11. A first order reaction is 75% completed in 100 minutes. How long time will it take for its 87.5% completion?
 - (a) 125min
- (b) 150min
- (c) 175min
- (d) 200min
- 12. At 300K, the half-life of a sample of a gaseous compound initially at 1 atm is 100 sec. When the pressure is 0.5 atmp, the half-life is 50 sec. The order of reaction is:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 13. The concentration of a reactant decreases linearly with time. What is the order of the reaction?

- (a) 1st order
- (b) Fractional order
- (c) 2nd order
- (d) Zero order

- 14. The half life of any zero order reaction is
 - (a) Independent of concentration
- (b) Proportional to inverse of concentration
- (c) Proportional to concentration
- (d) Proportional to square of the concentration.

Contact: 8171000425, 7252022576 Web: www.genesis-tutorials.com Email: info@genesis-tutorials.com

15. The method of Initial rates is used to measure the rate law for the reaction given below:

$$2NO_{(g)} + 2H_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(g)}$$

The following initial rates are determined.PA denotes the partial pressure of species A.

P_{NO} (Torr)	P_{H2} (Torr)	Initial rate (Torr/s)
200	400	0.46
400	200	0.92
400	400	1.85

These data imply which of the following rate laws

(a) Rate =
$$K P_{NO}$$

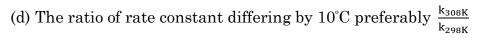
(b) Rate =
$$K P_{NO^2}$$
. P_{H_2}

(c) Rate =
$$K P_{NO} P_{H2}^2$$

(d) Rate =
$$K P_{NO}^2 P_{H2}^2$$

16. The plot of $\ln k$ versus $\frac{1}{T}$ is linear with slope of

$$(a) - \frac{E_a}{R}$$


(b)
$$\frac{E_a}{R}$$

(c)
$$\frac{E_a}{2.303R}$$

(c)
$$\frac{E_a}{2.303R}$$
 (d) $-\frac{E_a}{2.303R}$

17. The temperature coefficient of a reaction is:

- (a) The rate constant
- (b) The rate constant at a fixed temperature.
- (c) The ratio of rate constant at two temperature.

18. Which of the following statements is NOT correct for a catalyst?

- (a) It increases the rate of a reaction.
- (b) It is not consumed in the course of a reaction.
- (c) It provides an alternative pathway for the reaction.
- (d) It increases the activation energy of the reaction.

44-Karanpur, Near Luxmi Narayan Mandir, Dehradun

Contact: 8171000425, 7252022576
Web: www.genesis-tutorials.com
Email: info@genesis-tutorials.com

- 19. In the presence of a catalyst E_a is lowered by 2 kcal at 27°C. Hence, the rate will be increased by:
 - (a) 7 times
- (b) 14 times
- (c) 28 times
- (d) 56 times
- 20. The specific rate constant of decomposition of a compound is represented by-

$$\ln k = 5.0 - \frac{12000}{T}$$

The activation energy of decomposition for this compound at 300K is

- (a) 24 Kcal/mole
- (b) 12 Kcal/mole
- (c) 24 cal/mole
- (d) 12 cal/mole

