

44-Karanpur, Near Luxmi Narayan Mandir, Dehradun

Contact: 8171000425, 7252022576 Web: www.genesis-tutorials.com Email: info@genesis-tutorials.com

GENESIS TUTORIALS

Test-Chemical Kinetics

1.	If the	e rate	laws	are	expressed	l in	concentration	unit	mol	dm ⁻	-3,	the	unit	of	the	third	order
	react	ion ra	te cor	ıstar	nt is:												

- (a) dm³ mol¹ sec¹

- (b) $dm^3 mol^{-1} sec^{-1}$ (c) $dm^6 mol^{-2} sec^{-1}$ (d) $dm^{-3} mol^1 sec^{-1}$
- 2. The value of the rate of constant for the gas phase reaction $2NO_2 + F_2 \rightarrow 2NO_2F$ is 38 dm^3 mol⁻¹ sec ⁻¹ at 300K. The order of the reaction is:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3
- 3. If the concentration vs time plot is found to be linear with a negative slope, the order of the reaction is:
 - (a) 0
- (b) 1
- (c) 2
- (d) cannot be determined.
- 4. The differential rate law equation for the elementary reaction $A + 2 B \rightarrow 3 C$, is:

(a)
$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt} = k[A][B]^2$$

(b)
$$-\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt} = \frac{1}{3} \frac{d[C]}{dt} = k[A]^2[B]$$

(c)
$$-\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt} = \frac{1}{3} \frac{d[C]}{dt} = k[A][B]^2$$

- (d) None of these
- 5. For the reaction $2 A \rightarrow B + \frac{3C}{3}$; if

$$-\frac{d[A]}{dt} = k_1[A]^2; \quad \frac{d[B]}{dt} = k_2[A]^2; \quad \frac{d[C]}{dt} = k_3[A]^2$$

The correct relation between k_1 , k_2 and k_3 is:

- (a) $k_1 = k_2 = k_3$ (b) $2k_1 = k_2 = 3k_3$ (c) $4k_1 = k_2 = 3k_3$
- (d) $\frac{k_1}{2} = k_2 = \frac{k_3}{3}$
- 6. If $r = k [A]_0^2 [B]_0$ for a reaction, by what factor is the initial rate multiplied if the $[A]_0$ is multiplied by 1.5 and $[B]_0$ is tripled?
 - (a) 4.5
- (b) 6
- (c) 6.75
- (d) None of these
- 7. The half life time for a reaction at initial concentrations of 0.1 and 0.4 mol L⁻¹ are 200 s and 50 s respectively. The order of reaction is:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

44-Karanpur, Near Luxmi Narayan Mandir, Dehradun

Contact: 8171000425, 7252022576 Web: www.genesis-tutorials.com Email: info@genesis-tutorials.com

8.	For	a	certain	first-order	reaction,	the	rate	constant	is	0.92	s^{-1} .	After	5	half	lives,	the
percentage of reactant that remains unreacted is-																

- (a) 50%
- (b) 25%
- (c) 6%
- (d) 3%

9. The half life of a zero order reaction $(A \rightarrow P)$ is given by (K = rate constant)

- (a) $t_{1/2} = \frac{A_0}{2K}$ (b) $t_{1/2} = \frac{2.303}{K}$ (c) $t_{1/2} = \frac{A_0}{K}$ (d) $t_{1/2} = \frac{1}{KA_0}$

10. A first order chemical reaction is 10% complete in 10 minutes. Its half life is ($\log 3 = 0.48$)

- (a) 50.50 minutes
- (b) 7.5 minutes
- (c) 75.2 minutes
- (d) 150.4 minutes

11. Which of the following statements is NOT correct for a catalyst?

- (a) It increases the rate of a reaction.
- (b) It is not consumed in the course of a reaction.
- (c) It provides an alternative pathway for the reaction.
- (d) It increases the activation energy of the reaction.

12. Arrhenius equation is given by-

- (a) $\ln K = \ln A + \frac{Ea}{RT}$ (b) $\ln K = \ln A \frac{Ea}{RT}$ (c) $K = A \cdot \frac{Ea}{RT}$

13. Temperature dependence of the rate constant for a reaction obeys the Arrhenius equation $k = A.e^{-\frac{Ea}{RT}}$. According to this equation, as T approaches infinity, k will approach:

- (a) A
- (b) infinity
- (c) 1
- (d) 0

14. According to Arrhenius equation (k = rate constant and T = temperature)

- (a) ln k decreases linearly with 1/T
 - (c) ln k decreases linearly with T
 - (c) ln k increases linearly with 1/T
 - (d) In k increases linearly with T

15. A first order gaseous reaction is 25% complete in 30min at 227°C and in 10 min at 237°C. The activation energy of the reaction is closest to (R=2 cal K⁻¹ mol⁻¹)

- (a) 27 K cal mol⁻¹
- (b) 110 K cal mol⁻¹
- (c) 56 K cal mol⁻¹
- (d) $5.5 \text{ K cal mol}^{-1}$